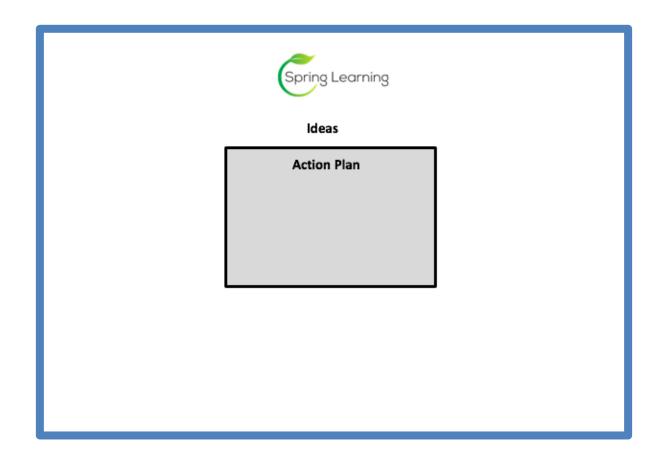
Teaching Primary Science Outdoors Part 2


Helen Spring

www.SpringLearning.co.uk helen@springlearning.co.uk @SpringLearns

Action planning

GAP Tasks

- 1. Look at your planning for the current or next topic you are teaching. Highlight which objectives could and should be taught outdoors.
- 2. Teach one science lesson (or part of one lesson) outdoors before next week. Be prepared to discuss next week.

Teach one science lesson (or part of one lesson) outdoors before next week. Be prepared to discuss next week.

- What were the lesson objectives?
- Which type of enquiry did the children use?
- What happened?
- What went well?
- What didn't work so well?
- What questions do you have?

What do you think the aims of the Primary Science Curriculum are?

Aims

The national curriculum for science aims to ensure that all pupils:

- develop scientific knowledge and conceptual understanding through the specific disciplines of biology, chemistry and physics
- develop understanding of the nature, processes and methods of science through different types of science enquiries that help them to answer scientific questions about the world around them
- are equipped with the scientific knowledge required to understand the uses and implications of science, today and for the future.

5 Types of Enquiry

The nature, processes and methods of science

'Working scientifically' specifies the understanding of the nature, processes and methods of science for each year group. It should not be taught as a separate strand. The notes and guidance give examples of how 'working scientifically' might be embedded within the content of biology, chemistry and physics, focusing on the key features of scientific enquiry, so that pupils learn to use a variety of approaches to answer relevant scientific questions. These types of scientific enquiry should include: observing over time; pattern seeking; identifying, classifying and grouping; comparative and fair testing (controlled investigations); and researching using secondary sources. Pupils should seek answers to questions through collecting, analysing and presenting data. 'Working scientifically' will be developed further at key stages 3 and 4, once pupils have built up sufficient understanding of science to engage meaningfully in more sophisticated discussion of experimental design and control.

5 Types of Enquiry

5 Types of Enquiry in EYFS

ELG: The Natural World Children at the expected level of development will:

- Explore the natural world around them, making observations and drawing pictures of animals and plants;
- Know some similarities and differences between the natural world around them and contrasting environments, drawing on their experiences and what has been read in class;
- Understand some important processes and changes in the natural world around them, including the seasons and changing states of matter.

Progression in Working Scientifically

'KS1 - pupils should be helped to develop their understanding of scientific ideas by using different types of scientific enquiry to answer their own questions, including observing changes over a period of time, noticing patterns, grouping and classifying things, carrying out simple comparative tests and finding things out using secondary sources of information.'

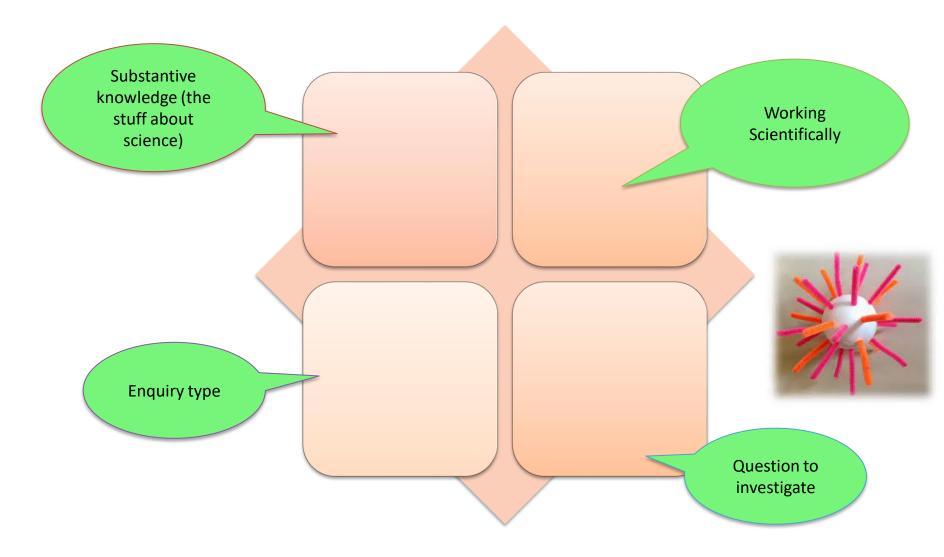
Science programme of study 2014

Progression in Working Scientifically

'LKS2 - Pupils should ask their own questions about what they observe and make some decisions about which types of scientific enquiry are likely to be the best ways of answering them, including observing changes over time, noticing patterns, grouping and classifying things, carrying out simple comparative and fair tests and finding things out using secondary sources of information.'

Science programme of study 2014

Progression in Working Scientifically


'UKS2 – Pupils should select the most appropriate ways to answer science questions using different types of scientific enquiry to answer their own questions, including observing changes over different periods of time, noticing patterns, grouping and classifying things, carrying out comparative and fair tests and finding things out using a wide range of secondary sources of information.'

Science programme of study 2014

Planning for Working Scientifically

Substantive knowledge (the stuff about science)

Identify that most living things live in habitats to which they are suited...

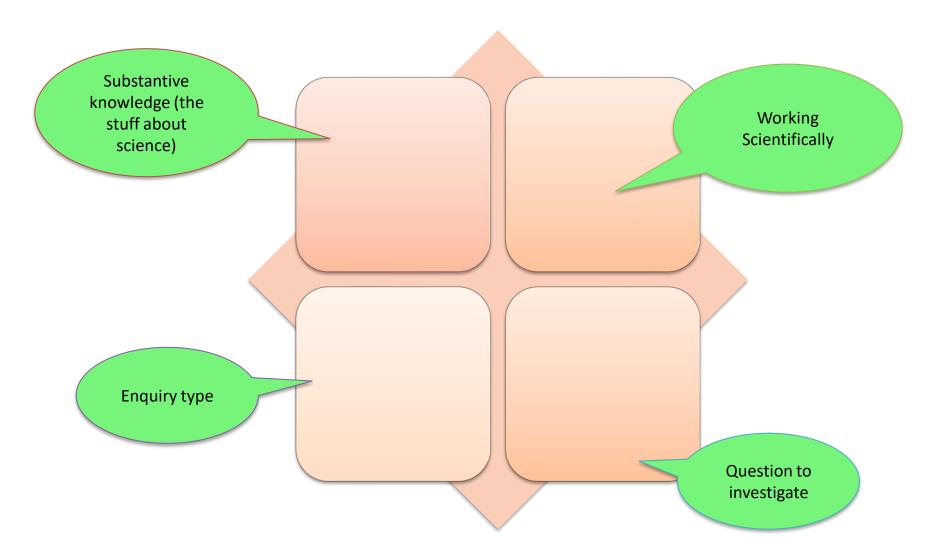
Working Scientifically

observing closely, using simple equipment

Which minibeasts will I find in this habitat?

Question to investigate

Enquiry type



Pattern seeking

Planning for Working Scientifically

Explorify

Assessment

- Assessment of Working Scientifically (e.g. PSTT TAPS)
- Assessment of Conceptual Understanding (e.g. PLAN Assessment)
- A good tracking system

						7		
YEAR 3 SCIENCE	ASSESSMENT RECORD							
need to have evi 'working scientif the final year of t assessments that	oupil is working at the expected standard in science, teachers dence which demonstrates that the pupil meets all of the cally' statements and all of the 'science content' taught in the key stage. Where possible, teachers should draw on thave been made earlier in the key stage to make their set this framework.	name						
Working Scientifi (LKS2 NC require	cally: working at the expected standard ments)							
asking relevant question	ons and using different types of scientific enquiries to answer them							
setting up simple prac	tical enquiries, comparative and fair tests							
	careful observations and, where appropriate, taking accurate measurements using range of equipment, including thermometers and data loggers							
gathering, recording, o	classifying and presenting data in a variety of ways to help in answering questions							
recording findings usin	ng simple scientific language, drawings, labelled diagrams, keys, bar charts, and							
reporting on findings f	rom enquiries, including oral and written explanations, displays or presentations of							
using results to draw s raise further questions	imple conclusions, make predictions for new values, suggest improvements and							
identifying differences	, similarities or changes related to simple scientific ideas and processes							
using straightforward	scientific evidence to answer questions or to support their findings							
Science Content:	working at the expected standard (Y3 NC requirements)							
identify and describe t flowers (Y3 Plants)	he functions of different parts of flowering plants: roots, stem/trunk, leaves and							
	nts of plants for life and growth (air, light, water, nutrients from soil, and room to ry from plant to plant (Y3 Plants)							
investigate the way in	which water is transported within plants (Y3 Plants)							
explore the part that fl and seed dispersal (Y3	owers play in the life cycle of flowering plants, including pollination, seed formation Plants)							
	·							

Assessing Working Scientifically

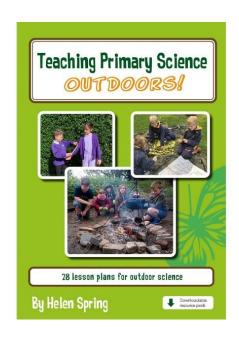
Primary science enquiry outdoors

Learning outdoors is a key part of primary science. The Teacher Assessment in Primary Science (TAPS) project has created a wide range of activities to support Working Scientifically. Many of these can take place outside and examples are listed below, with hyperlinks directly to the TAPS plan.

	Possible skills focus	Examples of science learning which can be done outdoors	Examples of science learning about the outdoors
Age	- Ask questions	How could we make the best shelter? Incy spider shelter R	How can we sort the things we have found? Scavenger sort R
4-7	- Perform simple tests	What happens to the ice? Frozen balloons R	Do all leaves look the same? <u>Leaf look</u> Y1
	- Observe closely	Which materials can we see light through? Transparency Y1	What parts does this plant have? Plant structure Y1
	- Gather and record data to	Which objects do we think will float/sink? Float & sink Y1	What colours/shades can we find? Shades of colour Y1
	answer Qs	Which material made the best boat? Boat materials Y2	What season is it now? Seasonal change Y1
	- Identify and classify	How do we get the character out of the ice? Ice escape Y2	What does a plant need to keep healthy? Plant growth Y2
		What materials can we find? Materials hunt Y2	What living things can we find nearby? Nature spotters Y2
		How do we test which material is the most waterproof?	Is this alive? Has this ever been alive? Living & non-living Y2
		Waterproof Y2	How many daisies are in each area? Daisy footprints Y2
			Where do woodlice live? Woodlice habitats Y2
Age	- Plan different types of	Which kind of materials make shadows? Making shadows Y3	How much water do plants need? Measuring plants Y3
7-11	enquiry to answer Qs	Which rock is the most hard-wearing? Rocks report Y3	How can we help our local environment? Eco action Y3
	- Take measurements	How can we package the egg? Egg drop Y3	What living things can we find? Local survey Y4
	- Gather, record and	Which area is hottest/coldest? Adapt Measuring temp Y4	Making a classification key for our area, e.g. Outdoor keys Y6
	classify data	How do we find out the best conditions for drying? Drying Y4	
	- Report findings	Which is the best material for the job? Adapt Champion	Plus:
	- Use results to draw	tapes Y5	Woodland Trust spotter sheets and activities
	simple conclusions	How can we compare our planes? Paper planes Y5	Growing plants website guide for each month of the year
	- Evaluate degree of trust	How far can we make a spinner travel? Spinners Y5 (link to	Dr Katherine Forsey's detailed plans for
	in results	seed dispersal)	pond/bush/minibeast/rock pool hunts

The full set of enquiry lesson plans can be found under the 'Focused Assessment plans' tab, including many others which could take place outdoors: https://pstt.org.uk/resources/curriculum-materials/assessment

The majority of plans can be adapted for any age group or situation, so the above are only suggestions.


Resources to support outdoor learning and science

Teaching Primary Science Outdoors

Helen Spring

www.SpringLearning.co.uk helen@springlearning.co.uk @SpringLearns

