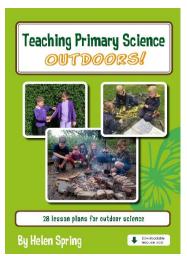
Teaching Primary Science Outdoors

Helen Spring

www.SpringLearning.co.uk helen@springlearning.co.uk @SpringLearns

Spring Learning



The Association

for Science Education

What is Outdoor Learning?

Learning Outside the Classroom (LOtC) is the use of places other than the classroom for teaching and learning. It is about getting children and young people out and about, providing them with challenging, exciting and different experiences to help them learn.

Council for Learning Outside the Classroom

Outdoor learning is that which takes place beyond the four walls of the traditional classroom environment.


Association for Science Education (ASE)

Why go outside anyway?

5 Characteristics of Effective Outdoor Learning

- 1. one that supports children in making the transitions from within the classroom to beyond it
- 2. one where there is both regular and frequent use of the outdoor setting.
- 3. fully prepares children for working in the outdoors by addressing the basic psychological and physiological needs of the children before leaving the classroom
- the teachers manage the transition back to the classroom as consciously as they manage the move to the outdoor setting
- 5. a shift to weaker framing

HOATH, L. (2015).

Health & Safety in Primary Science...

CLEAPPS www.cleapss.org.uk

There is an annual password which can be found on the latest newsletter. Email membership@cleapss.org.uk to check if you are a member.

Be Safe book <u>www.ase.org.uk</u>

Any advice given by your LA must be considered

Activity - Exploring materials for a pixie house

Resources needed

Before lesson – check for litter especially near bench

In an ideal world, this lesson would take place in a forest area, where there are lots of sticks, leaves and other natural materials around. Additional materials should include different types of cloth (cotton, felt, etc.), plastic carrier bags or cling film, cardboard and paper towel.

What to do

John to work with TA Take Abby's epi pen (wasps)

Prepare the materials you want the children to work with.

Discuss what children already know about the materials available to them.

Explain your health and safety rules. These might include the area that the children are allowed to work in and the things they can and cannot pick up.

If possible, put the lesson into a context, such as a story or topic.

Set the task – Can you make a house for a pixie? Discuss what the requirements are for your pixie... Does the pixie need to be warm, dry, protected from predators? You can adapt this depending on the context and the materials available.

Give the children time to explore with the materials available to them and to build a shelter for their pixie.

Children should then carry out simple tests to find out whether the requirements set were met. This is likely to include whether the pixie house is waterproof, warm or windproof.

Ensure that children wash their hands thoroughly after working outdoors.

Go from the fence to the wall. Do not pick the orange berries.

Materials

Images © Millgate House Publishing 'Teaching Primary Science Outdoors' by Helen Spring

Materials

Images © Millgate House Publishing 'Teaching Primary Science Outdoors' by Helen Spring

Definitely outdoors....


Images © Millgate House Publishing 'Teaching Primary Science Outdoors' by Helen Spring

Could be outdoors....

Images © Millgate House Publishing 'Teaching Primary Science Outdoors' by Helen Spring

Planning for Outdoor Learning

- Take a copy of the curriculum
- Highlight the obvious opportunities for outdoor learning in your year group (eg – identifying trees)
- In a different colour, highlight the less obvious opportunities for outdoor learning
- Choose one objective and plan how you will teach it outdoors.
 What barriers need to be overcome in your context?

Planning to teach science outdoors

Plants - Year 3

Pupils should be taught to:

- identify and describe the functions of different parts of flowering plants: roots, stem/trunk, leaves and flowers
- explore the requirements of plants for life and growth (air, light, water, nutrients from soil, and room to grow) and how they vary from plant to plant
- investigate the way in which water is transported within plants
- explore the part that flowers play in the life cycle of flowering plants, including pollination, seed formation and seed dispersal

Planning to teach science outdoors

Animals, including humans - Year 1

Pupils should be taught to:

- •identify and name a variety of common animals including fish, amphibians, reptiles, birds and mammals
- •identify and name a variety of common animals that are carnivores, herbivores and omnivores
- •describe and compare the structure of a variety of common animals (fish, amphibians, reptiles, birds and mammals including pets)
- •identify, name, draw and label the basic parts of the human body and say which part of the body is associated with each sense

Assessment

- A range of approaches for assessing Working Scientifically (PLAN Assessment and PSTT TAPS)
- A range of approaches for assessing Conceptual Understanding (PLAN Assessment)
- A good tracking system

YEAR 3 SCIENCE ASSESSMENT RECORD								
To judge that a pupil is working at the expected standard in science, teach need to have evidence which demonstrates that the pupil meets all of the 'working scientifically' statements and all of the 'science content' taught in the final year of the key stage. Where possible, teachers should draw on assessments that have been made earlier in the key stage to make their judgement against this framework.		name						
Working Scientifically: working at the expected standard (LKS2 NC requirements)								
asking relevant questions and using different types of scientific enquiries to answer them								
setting up simple practical enquiries, comparative and fair tests								
making systematic and careful observations and, where appropriate, taking accurate measurements standard units, using a range of equipment, including thermometers and data loggers	using							
gathering, recording, classifying and presenting data in a variety of ways to help in answering questi	ions							
recording findings using simple scientific language, drawings, labelled diagrams, keys, bar charts, an tables	nd							
reporting on findings from enquiries, including oral and written explanations, displays or presentation results and conclusions	ons of							
using results to draw simple conclusions, make predictions for new values, suggest improvements ar raise further questions	nd							
identifying differences, similarities or changes related to simple scientific ideas and processes								
using straightforward scientific evidence to answer questions or to support their findings								
Science Content: working at the expected standard (Y3 NC requirements)								
identify and describe the functions of different parts of flowering plants: roots, stem/trunk, leaves ar flowers (Y3 Plants)	nd							
explore the requirements of plants for life and growth (air, light, water, nutrients from soil, and room grow) and how they vary from plant to plant (Y3 Plants)	to							
investigate the way in which water is transported within plants (Y3 Plants)								
explore the part that flowers play in the life cycle of flowering plants, including pollination, seed form and seed dispersal (Y3 Plants)	mation							

Assessing Conceptual Understanding

Assessing Working Scientifically

Primary science enquiry outdoors

Learning outdoors is a key part of primary science. The Teacher Assessment in Primary Science (TAPS) project has created a wide range of activities to support Working Scientifically. Many of these can take place outside and examples are listed below, with hyperlinks directly to the TAPS plan.

	Possible skills focus	Examples of science learning which can be done outdoors	Examples of science learning about the outdoors
Age	- Ask questions	How could we make the best shelter? Incy spider shelter R	How can we sort the things we have found? Scavenger sort R
4-7	- Perform simple tests	What happens to the ice? Frozen balloons R	Do all leaves look the same? <u>Leaf look</u> Y1
	- Observe closely	Which materials can we see light through? Transparency Y1	What parts does this plant have? Plant structure Y1
	- Gather and record data to	Which objects do we think will float/sink? Float & sink Y1	What colours/shades can we find? Shades of colour Y1
	answer Qs	Which material made the best boat? Boat materials Y2	What season is it now? Seasonal change Y1
	- Identify and classify	How do we get the character out of the ice? Ice escape Y2	What does a plant need to keep healthy? Plant growth Y2
		What materials can we find? Materials hunt Y2	What living things can we find nearby? Nature spotters Y2
		How do we test which material is the most waterproof?	Is this alive? Has this ever been alive? Living & non-living Y2
		Waterproof Y2	How many daisies are in each area? Daisy footprints Y2
			Where do woodlice live? Woodlice habitats Y2
Age	- Plan different types of	Which kind of materials make shadows? Making shadows Y3	How much water do plants need? Measuring plants Y3
7-11	enquiry to answer Qs	Which rock is the most hard-wearing? Rocks report Y3	How can we help our local environment? Eco action Y3
	- Take measurements	How can we package the egg? Egg drop Y3	What living things can we find? Local survey Y4
	- Gather, record and	Which area is hottest/coldest? Adapt Measuring temp Y4	Making a classification key for our area, e.g. Outdoor keys Y6
	classify data	How do we find out the best conditions for drying? Drying Y4	
	- Report findings	Which is the best material for the job? Adapt Champion	Plus:
	- Use results to draw	tapes Y5	Woodland Trust spotter sheets and activities
	simple conclusions	How can we compare our planes? Paper planes Y5	Growing plants website guide for each month of the year
	- Evaluate degree of trust	How far can we make a spinner travel? Spinners Y5 (link to	Dr Katherine Forsey's detailed plans for
	in results	seed dispersal)	pond/bush/minibeast/rock pool hunts
			· · · · · · · · · · · · · · · · · · ·

The full set of enquiry lesson plans can be found under the 'Focused Assessment plans' tab, including many others which could take place outdoors: https://pstt.org.uk/resources/curriculum-materials/assessment

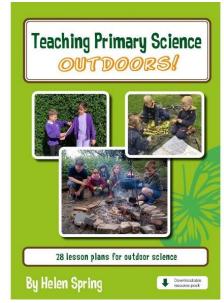
The majority of plans can be adapted for any age group or situation, so the above are only suggestions.

Modelling

Images © Millgate House Publishing 'Teaching Primary Science Outdoors' by Helen Spring

Evolution and inheritance

Images © Millgate House Publishing 'Teaching Primary Science Outdoors' by Helen Spring



Resources to support outdoor learning and science

Teaching Primary Science Outdoors

Helen Spring

www.SpringLearning.co.uk helen@springlearning.co.uk @SpringLearns

